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ABSTRACT

The effect on stresses in a cylindrical shell with a
cireular penetration subject to internal pressure has been
Investigated. The research is‘limited to thin, shallow,
linearly elastic cylindrical shells; however, some compar-
isons are made to thiek shell experimental measurements,
Results provide numerical predictions of peak stress con-
centration factors around nonreinforced and reinforced
penetrationé in pressurized cylindricél shells. Analytical
results are correlatéd with published formulas, as well as
theoretical and experimental-results. An accuracy study is
‘made of the finlte element program for each of the con-
-figurations. considered 1mpoftant in pressure vessel tech--
nology. |

A formula 1is developed to predict the peak stress’con-
centration factor (SCF) for analysis and/or design in con-
junction with the ASME Boller and Pressure Vessel Code,
Section.VIII, Divisions 1 and 2. 'The formula is rationally
derived to include all of the parameters that are required
to define the various penétraﬁion configurations usedlin
pressure vessel analysis, design, and construction. The
égggracy of the empirical formula 1s determiqed by éomparing
to humerical,-theoretical, and experimental data. In most
cases, 1t is shown that the ASME Pressure Vessel Code 3CF

of 3.3 is extremely conservative,.

"I
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CHAPTER T
INTRODUCTION

1.1 Statement of the Problem

In a cylindrical shell weakened by a hole, the stress
distribution caused by an internal pressure load applied to
the shell willl differ considerably from that in an unweak-
ened shell. The maximum stress will be much larger if there
is a circular hole iﬁ the shell than in the case where therer
is no pénetration. This conjecture 1is suggested immediately
by the casé of a flat plate weakened by a hole with the
plate stretched per unit length 1n one direction and with
one—halflof this stretch pef unit length in the.other direc-
tion. The maximum stress 1s 2.5 times the maximum stress
in the solild plate. This factofl(2.5) is known as the
stress concenfration factor (SCF). There is no reason to
expect that the SCF is 2.5 for the shell. It depends on

the geometry of the shell and the penetratilon: the curva-
pa2 ¢
RT

the hole, which 1s a ecircle in the projected shell surface,

ture parameter of the shell, pa being the radius of

R is the radius of the middle surface of the cyllinder, and

T, the shell wall thickness); the ratio of the dlameter of

A S

the holg,or'pipe to the radius of the shell; and the ratio

of the thickness of the pipe to that of the shell.‘l) Tne
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most important feature of the stress state in the shell

near the hole 1s that bendlng stresses occur, whefeas in

the unweakened shell only membrane stresses (E% and %% )

are present.
The loaded hole boundary condition in a pressurlzed
cylindrical shell with a membrane or diaphragm over the

hole to contain pressﬁre only has been investigated by

(1,2,3,4,5,6)

many authors. Another type of loaded hole

boundary 1is the perpendicular intersection of two cylinders

- shell and pipe. There are a few isolated numerical
(7,8,9,10)

solutions and some theoretical investiga-

(1,2,11,12)

tions. There are many experimEntal results

for both thin and thick shells containing nonreinforced

) (13 through 21)

penetrations (pilpe only and very few

for reinforced penetrations ~ pipe and pad (14,15,17,22,24)

and pipe and pads. (23,24)

(25) requlres in a

Also, the ASME Pressure Vessel Code
stress or fatlgue analysis the stress concentratlon factor

(SCF) to be not less than 3.3 for a "well designed penetra~

tion" in a cylindrical shell unless positive evidence is
available to the contrary. This evidence usually meaﬁs'a
separate ang%ysis to confirm the peak SCF., This factor Is
primarily nééded to obtaln peak stresses to pérform a
fatigue analysis to predict the remaining 1life at é pene-

tration 1n the shell or to assure that the peak stress

pacE B

g,gpALlfﬂ
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around a penetration does not exceed allowable stresses.
The need for_a more refined and/or a more clearly defined
stress concentratidn factor became apparent in valldating
the useful life of 91 penetrations in‘a cylindrical shell(38)
located in a work/residential area of NASA - Langley Research
Center. These penetrations in'the shell range in size from
1-inch to 60-inches in diameter. There are a few formulas

in the published 1itefa£ure(2’u’26’27)

for a membrane over
the hole or a very thin penetration‘(pipe},.but none are
applicable for reinforced penetrations in pressurized
cylindrical shelis.

The author and others were unsuccessful in obtaining
any computer ANSWers to an analytical finite element approach
to the actual intersection curve of the shell, pipe, and
pads boundaries. The compatibility equations for this
actual curve,rrather than a projected clrcular curve (un-
covered durlng this study), were not acceptable to the
computer program., Also, different coordinate systems for
the shell and pipe inﬁut descriptions, soclutlon vectors,
and output notations were unsuccessful. Therefore, itlwas
decided to abandon the analytical work and to magnetic
particle‘examine and/or rework these penetratlons rather
than perform the analyses to obtain the refined stress

concentration factors. This type of verification (field

work 1in lieu of analysis) is not practical in all cases

BB

A
g\mﬂ’“



since this shell which contains 91 penetrations is one of
1,600 pressure vessels (6000 pressure components) for which
the structural integrity must be verified or validated in

a five-year program at NASA - Langley Research Center.
Thus, there is a need for a positive and clear definition
of\a well designed penetration to allow use of the 3.3 SCF
or to obtaiﬁ the appropriate SCF. A "prﬁven" formula to
approximate the peak SCF and/or a finite element program

to bbtain a refined SCF would be invaluable in validating

shells, pipes and/or pad(s) configurations;

1.2 Object and Scopée

The objective of this study is to determine the effect
on stresses 1n a cylindr;cal éhell with a circular penetra-
tion subject to internal pressure. The research 1s limited
to thin, shalloﬁ, 1inear1& elastic cylindrical shells; how-
ever, some comparisons are made to thick shell experimental
measurements. Results from this study provide numerilcal
predictions of the peak stresses around nonreinforced and
relnforced penetfations in cylindrical shells. Analytical
results are correlated with published formulas, theoretlcal
and experimental resﬁlts.

The present research also 1lnvestigates the convergence
and accurac?“of different finite elements and mesh sizes.

Finally, an approximate formula 1s developed to predict the



peak stress concentration factor for analysis and/or design
in conjunction with the ASME Boiler and Pressure Vessel
Code, Seetion VIII, Division 1 and 2. 2°) The formula is
rationally derived to ineclude all of the parameters that
are required to define the penetrations used in pressdre'
vessel tecﬁnology...The accuracy of the empirical forﬁula
is determined by comparing to numerical, theoretical, and
experimental data. Since limited data is available for
reinforced penetrations, many different configurations are
pursued to supplement the published data to provide the
restrictions to the formula. These configurations are
modeled utilizing finite elements where compatibillty be-
tween the cﬁlindrical shell and the pipe/pad(s) are intro-
duced through enforced constraint equaﬁions. The conflg-
urations 1nveétigated are for force aﬁd/or plpe around
both nonreinfdrced and reinforced circular penetratipns in
cylindrical shells subject to Internal pressure. For the
force case, the penetration is considered to be covered by
a diaphragm or membrane that'aliows the hole edge to'deflect
and rotatew‘ It.alSo transmlts the pressure force to thé
shell in the form of a uniform transverse shear stress at
the hole edge. An automation computer program which
punches cards for these configurations for in?ut to a
finite element computer progfam (NASA STRUCTURAL ANALYSIS

PROGRAM ~ NASTRAN(28)Y 15 utilizea.

v



CHAPTER II
ANALYSIS

2.1 Matrlix Analysis by Finite Element Méthods
In the finite element method, 1t 1s necessary to obtain
a characterization of the stiffness properties of each
element in the struéture and to relate end nodal displace-
ments to the corresponding forces. This is expressed in
the following form:
[K}{u} = {F} (1)
where: [X] is the stiffness matrix
{u} is the displacement vector
{F} is the force vector
The process for generating a computer program of any
structure that is composed of many finite elements is to
first pick a set of local coordinates convenient for a
typleal element. The generalized element displacements
are {8} and forces are {F}. The displacements {8} and

stiffness matrix [K] are partitioned corresponding to ends

i1 and j:
p~ - ~ - ¢~ b
Kyg By By Fy
¢ 3= § } ,_ (2)
ACERRNECTE B O 55




In the process of connectlng elements, it is found that
one element's local ccordlnates are not the same as those
' for another element. Therefore, a set of system coordinates
1s chosen that is convenlent for a system of elements and
" the local coordinate points are numbered (points 1, 2, 3,

I

A systematié numbering process for the node points
and members is chosen. The stiffness Kij' for each element
is calculated in local coordinates where 1 and J refer
to the end ﬁbints of each’eiemént.

If the system coordinages or displacéments are called
{ul, the transformation from an eleméﬁt‘s coordinateg to a

system's coordinates is accomplished by a transformation

matrix, [e]. That is:

{8} = [a] {u} {3)

The stiffness of the element 1Is transformed to system

coordinates by use of Equatiéns (3), (2), and (1).

T

(K] = [a]” [K]I [{a] (4

Consider several elements that are connected. The
next step 1s to generate the master stiffness matrix [Kij]M
by summing:all member stiffnesses 1n system coordinates.(zg)
The comﬁatibility equations for requilred coordinate

points are introduced through multipolnt constralnt (MPC)



equations of the form:
‘ZAj,u.=O - - - (5)

wheret A is thelcoefficient
ulis the point
J is the degree of freedom
Thus, the stiffness matfix, fdrce; and displacement
vectors are modified by this degree of freedom Lipk fof
each MPC Equatiqn.(5)-at each grié point.(30).l _
After the compatibility equatlons are‘satiSTied; the
boundafy conditions (displacements of the structure) are
enforced through single—point consfraints (SPC). - Finally,
the system'applied extérnal forces {F} are identified

and the equation:
(K]p {ulg = (Flg o | | (6)
1s solved.

2.2 Formulation of the Problem _

Consider a flat rectangular plate of thickness T.
contalning a circuiar hole of radius N with its edges'
parallel to axes Y', Z' of the circular hole, A material
poirt or finite element grid pbinﬁ within the plate may be

located through'cylindrical coordinates (p, ¢, X) defined

through
Ap PAGR W



Y' = p sin ¢, 2' - o cos ¢ o L (7)

Suppose that the plane ¥' Z' is now rclled into a'circuiar
cylindrical shell in such a way that the Z'-axlis becomes a
generator of the cylinder'and Y' a circuléf arc denoted

by Y (see Figure 2,2.1). If R 1is the radius of the
middle surféce of the shell and © the angle in any normal
Cross sedﬁion of the cylinder measured from the Y=0 plane
in the positive direction of the Y-axis, thén the followlng
rélationships are obtained to define the.finite elemenfs

and grid points (see Figure 2.2.2):

Y! = Y = R8
R =R ‘
§ = Arc sin ( R_E%E_ﬂ) , (8)

Z' = Z = p cos ¢

Consider that.this same configuration - main (lower)

shell (shown in Figure 2.2.1) with mid-surface radijius

R - is intersected by a branch (upper) shell with mid-.
surface radius p, and thickness t, fﬁo = p, * t/2), see
Figure 2.2.3. The axis of the branch shell 1s normal

to the axisﬁgf the main shell. Both shells are considered
to be infiﬁite in length and capped at their ends.

Finally, consider that fthese two ecircular cylindrical



Z=2Z'"=pcos¢

(a) Plan view
| TR sin ¢
" R=R

& = Arc sin (—EM)
‘ ‘ R

(b) Elevation view

e

Figure 2.2.2,- Relationships used to define finite elements,

05 por L PAGE 15
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shells with mid-surface radii po and R are complicated

bj the addition of one or two reinforcing pads with

outside radius Pp and thickness tp (see Figure 2.2.4).
The location of the finite elements fhrough grid points
for a projected eclrcular hole in a eylindrical shell

with a pipe and pad(s) is governed by Egquations (8).

2.3 Introduction of Compatibility Equations

The solution of these problems reguires the matching
of certain physical guantities (compatibllity equations)
along the intersection curve of the two shells and pad(s).
When expressed in the cylindrical coordinate system, the
intersection curve 1s of a very complex nature. Due to
the difficulty of&solving bouﬁdary value probiems in which -
the boundaries are not situated on constant coordinate
curves, the intersectlon curve can be appfoximated by .pa,
‘po, and pp equal to some constants, whenever pO/R is
small, Figure 2.3.1, indicates the error involved in this
approximation when thé lower shell surface is developed

onto a plane.(ll) It can be seen that the actual inter-

<o

sectlon curve does not differ appreclably from a circle,

providing

;.9 < 1/2 (9)
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Therefore, the actual hole bouﬂdary is assumed to be circu~
lar, identicai to fhat‘of a projected view of the penetra-
tion. |
The compatibility equations for a pipe and shell con-
figuration (Figure 2.2.3) are introduced through MPC: |
Equations (5). The six equations for each grid point for
both the shell and the pipe at the pipe and shell juﬁcture

at p_ are as follows (A 1s deflection and 6 1s rotation):

Apipe ‘ shell

R - ﬂR ' = () |
pipe _  ,shell _ ‘T _shell _ .-
, Ae . Ag 5 92 0
pipe _  ,shell _ T , ..shelly _
fz bz 7. (=18 ) =0 o
pipe - shell _
BR QR ‘ 0
‘aPipe _ shell _
ee‘ 96 = 0
pipe ° _ shell _
BZ ez 0

where the subscript is the degree of freedom of the grid' 
polnt. For the finite element analysls, the independent_
degrees of freedom are those for the shell, and the depen-
dent degrees of freedom are those for thé pipe. The super-—
seript in Equations (15) denotes whéther the degfee of free-

dom represents the pipe or shell.

g&ﬁafs



14

The cpmpatibility equations for a "plpe-shell-inner
pad" configuration (Figure 2.2.4) are as follows: '

1; Pipe-to-shell Jjuncture (po): Equationé (10)

2. Inner pad (ip) to shell junctures for each grid -

polnt at both and p

iP - a3 -
LA Agﬁell _ (T+Zig) (- oShelly 0

alp_ gshell (T+Zié).- égﬁell-k=lﬁ"r; .
e;p . theli =0 |

Bép _ e:he11'= 0

e%p _ 6;hell - Q

The compatibility equations for a "pipe;shell—outer pad{op)"
configuration for each grid point at locations Po for the

plpe and pa ang pp for outer pad are as follows:

_AgipeA _ Ashell -

R 0
.&gipe - Aghell _ (g + top) B;hell -0 . (124)
Agipe _ A;hell N (g N topi eghell -
Kﬁﬂkﬁﬁﬁﬂ}Pﬁ&aﬁls

OF BOOR QUALITY
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R - By =

epipe _ eshell =0 ¢12a)
G 6

pipe  _ shell _
& 8, 0

op _ shell _

br Ap =0
Lo _ ,shell _ (T+top) gshell _ |

8 6 2 z .

. £ i

AOP _ Ashell . (T+ op) gShell =0 (12b)
Z z 27 78 .
op _ shell _
8r g =0

op _ shell _

bg 94 0

op _ shell _
bz 6y 0

The compatibility equations for a "pipe-shell-outer and
inner pads" configuration are identical to Eguations (11)
and (12). Each of these equations 1s provided as enforced
constraints to every shell, pipe, and pad(s) connecting

grid point.

2.4 Structural Analysis Computer Program

The finite element method is a modern, computer-orient-
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ed approach to the analysls of structures. One of its
principal advantages is 1ts complete generallty. This
versatility makes it possible to consider arbiltrary geom-
etries, support conditions, loadings, and variations of
material propertiles within the structures. The principal
limitation is the cost of operation; The cost 1s ihcurred
both in the time requifed to prepare the inpﬁt data deséfib—
ing the finite idealization of the structure and its loading,
and in the computer time requlired to obtain the éOlution;
The prdcess for generating theicompléte finite element
computer program is described in Chapter iIF Section 2,1. 
The finite element computer program utilized in this
study is the latest NASA STRUCTURAL ANALYSIS (NASTRAN) |
version - level 15.5.1. Structural elements are providéd
for specific representation of more common types'of con-
struction including rods, beams, shear panels, and plates.
The range of analyses that can be solved include static,
elastic stability, and dynamic structural problems.
NASTRAN has been specifically designed to treat large
problems with many degrees of f{reedom. Computation pré—
cedures in NASTRAN were selected to provide the maximum
obtainable efficiency for large problems., NASTRAN uses a
finite element model, wherein the distributed physical
properties of a structure are represented by the elements

interconnecting at the grid points. Loads are applied

. PAGE IS
ORIIAD Ty
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either at grid points or on the elements for which dis-
placements are caleulated, 39

The system displacements {ul}l in Equations (1}, (3),
(5), and (6) locate individual grid or node points which
schematically represent the structure. The structure is
approximated by connecting these grid points with the proper
elementé.(rods, bars, beams, and plates) which best describe
the individual shapes and the overall configuration to be
analyzed. In the process of connecting the elements to
the grids, material and geometrical properties (areaé,
moments of inertia, modulus of elasticity, Poisson's ratio)
for each element can be ldentified. By organizing all.of‘
thé grids, elements, and propertles in the form acceptable
to NASTRAN,-of other general purpose finlte element computer
programs, the stiffness matrix [K] in Equations (1), (2),
(4) and (6) can be generated in the computation process.
The loads {F} that apply to each elemenﬁ and/or discrete
grid polnts can be identified, and the cards ggneratedn

Triangular and quadrilateral elements with both inplane
and bending stiffness are used in this study. The NASTRAN
{level 15) numerical results were calculated using Langley
Research Center's CDC~6000 series computers. Also, HP-9810
programmable desk top calculator was used td iassist in

interpreting the data and to sutomate the empiriecal formula
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developed; The approximate number of degrees of freedom
required to model the.different configurations 1in this
study are as follows: shell, 1500; pipe, 300; and pad,
300. Once the displacements {ul}, Eguation (6), are deter-
mined, internal element stressés are obtalned. Finally,
inside and outside surface stresses for each element in
the structure are computed by NASTRAN from these internal
stresses (membrane stress i'bending stress). A shell,
pipe, and two pad configuration (modeled with 2400 degreés
of freedom) 1s presented in Appendix A. |

With regard to the cost of preparing the filnite ele-
ment program input data previously described, 1t is ﬁﬁite
likely that this willl exceed the cost of the computer
operation in most cases. In any numerical cbmputer method,
the characterization process of a structure can 5e tedlious
and time~consuming. A major part of the cost of data
preparation 1s spent in eliminating errors 1n the extenéive
tables of numbers required to describe the 1ldealization.
The extent of the input process can only be minimized by
the use of automation. In order‘that the finite element
method may be used effebtively as a research, analysis, or
design tool, 1t 1s essential that automatic mesh generation
programs be developed which will define the idealizations
of arbitrary shell geometries, Of similar importance to

the ggéctical use of such programs is automatic plotting

PRICINAL PAGE 1§
/108 POOR QUALITY
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to preseﬁt the configuration and results in a readily
usable format.

A computer program to "automatically" punch input
cards in the format acceptable to NASTRAN was developed.
This program generates the input for shell, pipe, and pads:
grid, element, load, compatlbility, and boundary condition
cards. The cards punched from this program are input to
NASTRAN for solving the inslde and outside surface element
stresses. Many configurations were soived (presented in
Chapter.V) in order to obtain trend data and comparative

results., As a spin-off of the NASTRAN program, plots can

be obtained for pietorial or presentation purposes and as

a debugging tool. Sample piots are shown in Figures 2.4.1,‘

2.4.2, and 2.4.3.

AL PAGR 19
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CHAPTER IIT
ACCURACY STUDY

3.1 Intrbduction

In the finite element analysis of any structure, a
first requirement is thekidealization of the structure.
For example, a shell surface (shown in Figure 3.1.1) is
divided into a system of appropriately shaped pileces. Thél
individual pieces must be standardized as simpie shapes '
suchlas triangles, rectangles, or quadrilaterals in order
that their stiffness properties may be defined. This
requirement'imﬁoses a certaln degree of approximation in
ldealizing the geometry of shells:  a curvedfboundary.
will usualiy‘be represented as a series of stralght line
segments. In general, this boundary,approiimatioh is not
severe, and it can be reduced to any desired error limilt
by reducing the size of the elements.

The most important apﬁroximation i1s iIn the shell

behavior asSumption itself. If the shell 1s treated as a

. two-dimensional surface rather than as a three-dimensional

solid, thils implles cerfain assumptions and limitations,
For example, 1n the Kirchhoff theory, 1t 1s assumed that
stresses in the direction normal to the shell éurface are
small compared to membrane stresses, and 1ines rniormal

to the surface are assumed to remaln normal and unstrained

A1, PAGE B
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durling deformation. Approximations of this type are not a
special feature of the finite element solution but are in-
herent in any shell theory. Another common approxima@ion,
in addition to the stralght llne segment represéntation of
boundaries, is that the elements connecting grid points

are flat surfaces or a group of-séveral flat surfaces. The
great advantage of this assumpﬁion is that the mehbréne'and
bending stiffness propertles of Fhe individﬁéi‘flatpiates
are uncoupled. The coupling, which 1is characteristic of
shell behavior, 1s developed only 1ln the assemblage of the
flat plates into an approximation of the curved shell‘

(31)

surface.

3.2 Types of Finite Elements

The nature of the finlte element approximation is such
that the analytlical results generally converge toward the
true solution as the finite element mesh size is refined.

Other factors in the convergence criterla are the number of

' grid polnts specified for each element, type of elements,

and primarily, the number of degrees of freedom (DOF) at
gach grid. The Kirchhoff theory takes account of five DOF
(3 translations and 2 rotations about axes tangent to the
shell surface). Most shell elements make uée of these same
5 DOF at each grid.

The filnite elements employed in the discretlzed shell
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in Figure 3.1.1 are both planar triangles and quadrilaterals
assembled from 4 planar triangles. The forces and stresses

(30)

on thesé elements are shown in IFigure 3.2.1 The mem-~.
brane gstiffness of the trlangular element 1is represented by
the well-known constant straln triangle ahd shown ih Figure
3.2.2. The componeﬁts of displacement; u and v,'are paréllel
to the local coordinaﬁe system (element X and Y axes)ﬂ1 The
bending property based on cubic diéplacement:pattéfns is;
given by a fully compatilble platé béﬁding.elemenﬁ,_al01bugh

bendlng triangle.(Bz)

This triangle 1s formed by sub=-
dividing 1t into three basic bending trianglesﬁas ShoWn

in Figure 3v2.3. The X-axis of each sUb—triéngle correépoﬁds
with an exterior edge, so that contiﬁuity of slqpé'énd.' |

deflection with surrcounding Clough triangles 1s assured. .

The added grid polnt in the center is like the other grid

points in that equllibrium of forces and compatibllity of .
displacements are required at the center point., 1In addi~_
tion, the rotations parallel to the internal boundaries at

their midpoints, points 5, 6 and 7, are constrained to be

continuous across the boundaries. The equations for slopés
in the basic trlangles contain guadratic and lower drder u
terms, and.since th normal sldpes along interlor boundaries
are constrained té'be equal at three points (both ends and
the middlé), it follows that slope confinuity is satisfied

along the whole boundary. Dispiacement continulty on all

AT PAGE B
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Structural modeling
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Figure 3.2.1.- Forces and stresses in plate elements.
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Figure 3.2.3,- Clough bending triangle,
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boundaries is automatically satisfied when the displacement
funetlon contains only cuble and lower order terms. Thus,
complete continulty of slope and displacement on all
intericr and exterior boundarlies is assured for the Clough
triangle.

The Clough triangie is superimposed with a membrane
friangle tc form triangular elements with both membrane and
bending stiffness. Therefofe,'this triangular element has
5 DOF at each corner, 2 deriving from membrane displacements
and 3 from the bending. The quadrilateral plate was
developed to provide improved membrane straih behavior while
retaining the basic 5 DOF per grid system. It 1s formed as
M:planar triangles as shown in Figure 3.2.4 plus 3.2.5, with
the grids'modeling the shell midsurface. Each triangle Has
one-half of the bending, stiffness or one;half of the -

.~ thickness (membrane) assigned to the quadrilateral element,
Since four points, 1n general, do.not lie in a plane,.care"
must be taken to ensure equilibrium and compatibility.
Rathef than try to define a warped surface, anlaveraging
process 1s used on the noncoplanar membrane triangles.' The

bending element uses two sets of overlapplng basic bending
triangles. Since coupling between membrane stiffness_and
bending stiffness is not, at present, included in NASTRAN,
guadrilateral elements with both membrane and bending

properties are treated by simple superposition of their

ORIGINAL PAGE 18
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I

Figure 3.2.4.- Quadrilateral membrane element.

Figure 3.2.5.- Quadrilateral bending element.

| '[DRIGHVAD PAGE I3
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membrane and bending stiffness matrices. - The following
NASTRAN elements are the ones used in this research:
1. TRIA 2 - The triangular element with both inplane

and bending stiffness.

2. QUAD 2 -~ A quadrilateral element similar to TRIA 2.

3.3 Shell

| In this sectilon, considération is given to the accuracy
obtalned with different mesh sizes and the two types of
elements (TRIA 2 and QUAD 2) used to obtaln the peak stress
concentration factor for a préssurized cylindrical shell
with a cireular hole, Figure 2.2.1. A gquarter of the shell
is choseﬁ as the model: shell radius, R; length, > 2R; and
the hole radius, Pye A typilcal finite element model 1s
shown in Filgure 3.3.1. If the element size or general

mésh geometry 1s too large at discontinuitles (such as a
penetration), the structure will be "too stiff". The
finite element approximations to peak stress concentration
factors will be below the correct answer. This model
provides a gradual transition of large to small elements as
the hole opening 1s approached. Since the "radial" section
is tha easiest to generate or modify, différent mesh
arrangements and elements will be used to compare the
accuracy .9f peak stress concentration factors (8CF) to

"exact" solutlons.

PRIGINAL PAGE B
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The rectangular arrangement of quadrilateral (RQ)
elements of the "radial" section 1s shown tc a larger scale
in Figure 3.3.2. The right {RDT) and left (LDT) diagonal
arrangements of triangular elements for the'"radial“ section
are shown in Figures 3.3.3 and 3.3.4, respectively. A
refined version (additional grid points) of left dlagonzl
triangular (RLDT) elements 1is shown in Figvre 3.3.5. The
triangularizing of only the first element 1n the rectangular
arrangement of‘quadrilateral (1TRQ) elements is shown in
Figure 3.3.6. These code names for ildentifying the articu-
lation arrangements are similar to those used by Melosh.(3l)
It should be noted that:efforts were pursued in refining
these configurations by grouping the same number of.grid‘
points very near the hdle (sée”Figﬁre'BgS,T)'- all to no
avail. Also, results for refining of tﬁe RLDT, regardless
of the locél transitién; were 1n error. .This idea of too

much local refining is known.(3l)

When the elements were
smaller than one-half of the Sﬁell thickness, the peak
SCF oscillated about the hexact" solution.

A summary of the computef runs for peak stress con-
centration factors for a pressurized cylindricai shell with
force around the hole is presented in Table 3.3.1. The
units used in this table:and throughout this study are in
thé English or American System (inches and pounds). The.

RQ radlal section model approximates the peak inside S3CF

GIvAD PAGE B
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to within -11% (below) of the theoretical or "exact™
solution obtained in Reference (3). The approximations
for the triangular arrangements (RDT, 1TRQ, LDT) are
converging tc the theoretical solution without Iocal
refining (RLDT). Many authors have reported the mid-

(1,2:3) Since this 1s not the

surface {average) SCF.
peak vaiue, the largest SCF (inside) will be the gauge
in the accuracy comparisons to determlne the arrange-
ment to use for all other shell/force problems. The
LDT (which is mﬁch eésier to generate) peak inside

SCF is slightly more accurater(-l.OS% difference)

than the RLDT (+1.14% difference). Therefore, the LDT
arrangement is the one chosen to obtain the peak SCF

results for shell configurations with just a force
around the hole.
Table 3.3.1 - Peak SCF For Finite Element Models For A

Pressurized Cylindriecal Shell With Force Arcund
The Hole: pa=l3.0, R=112.G, v=0.3.

SECTION 7 INSIDE OUTSIDE ANGL. -
DESCRIPTION NASTRAN | ¢ DIFF | MNASTRAN | ¢ pIFw NASTRAN [% DIFF
RQ 1.25 | 4.997 | ~10.99 3,108 |-16.83 4.053 F13.131
RDT 1.25 | 5.405 |- 3.72 3.395 - 9.15 4,40 |~ 5.88
ITRQ 1.25 | 5.479 |- 2.41 3.4877 {1~ 6.96 1 . at& | ob&.z1
LDT 1.25 ] 5.555 |~ 1.05 3.554 j~ 4,90 4.555 | 2,57
RLDT 1.25 | 5.678 + 1.14 3.680 [~ 1.53 4.679 W 0.09
"EXACT" L6114 "EXACTAL 3.737 WEYACTH 4.8
REF. (3 REF, ( REFERENCES '
(1,2,3)
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Figure 3.3.2.- Rectangular arrangement of quadrilateral (RQ) elements for
’ "radjal” section.
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Figure 3.3.3.- Right diagonal arrangement of triangular (RDT) elements for
< "radial" section.
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Figure 3.3.4.- Left diagonal arrangement of triangular (LDT) eléments for
“radial" section.
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3.4 BShell and Pipe

The next configuration to be considered is two inter-
secting c¢ircular cylinders (shell and pipe) as shown in
Pigure 2.2.3. The same shell models in Section 3.3 are
used; therefore, a quarter of the pipe is mcdeled: hqle
radius, e, ; pipe radius, p_; pipe thickness, t; pipe length,
> 2 pa’ and all of the shell parameters previously described.
Typlcal finite element models for a pipe are arranged and
shown as follows: rectangular quadrilateral (RQ), Figure
3.4.1; right diagonal triangles (RDT), Figure 3.4.2; and
left diagonal triangles (LDT), Figure 3.4.3. The success-
ful implementation of the compatibility equations for’
the pipe/shell Juncture was accomplished by using the

following:

1. The 6 relationship in Equations (8) and not

8 = 2 Arc sin (_E_ilﬂ_ﬂ) or
2R
p. sin
8 = 2 Arc sin (__E’_-.___.__(p)9
2R

2. The.same coordinate system for both the shell
and the pipe, and

3. The same coordinate system for input, solution,
and ocutput. | |

A summary of the peak SCF computer sclutions for shell

and pipe is presented in Table 3.4.1. The finite element

AGE »
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approximations are converging to the theoretical
solutions.(l’3) For Tr= 1.084, the convergence 1s as good
as the shell problem. Fcr the same reasons, the left
diagonal triangular shell and the right diagonal pipe!is
the configuration used in the numerical NASTRAN results.
For comparison purposes, computer results for two other
shell thicknesses (T = 1.25 and 2.167) for the "simplest"
and the chosen configurations are also shown.

Figures 3.4.4 through 3.4.7 show the comparison of
the NASTRAN results with experimental and analytical data.
The difference between the chosen NASTRAN configuration

and the experimental data from that in Cranch (14)

is dnly
8.38%, see Figure 3.4.4. Another example of trend and
accuracy 1s the nozzle—to-cylinder 1ntersecfion model in
Figure 3.4.5. The analysls was performed by Prince and the
experimental investigation by the Oak Ridge National

(7)

Laboratory. Remarkable accuracy 1is achieved (-3.55%

difference) with a direct trend comparlson, see Filgures

" 3.4.6 and 3.4.7. Other examples of experiméntal data and

numerical/analytical findings are presented in the results,

Chapter V.
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3.4.2.- Right diagonal arrangement of triangular {(RDT) elements for pipe.
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M"?f’x%
o@@“‘oo%



223

288

Figure 3.4.3.- Left diagonal arrangement of triangular (LDT) elements for pipe.
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SHELL '1HICKNESS = 1.084

INSIDE SCF ON SHELL
=0 &
SHELL @ a
RADIAL PIPE % :
SECTION : DESCRIPTION NASTRAN L IFFERENCE.
DESCRIPTION .

-~ LDT _
(First Row LDT 2,189 ~12.09
Removed)

LDT :
{First Row RDT 2.197 -11.77

Removed )

RQ R S 2,227 oy N BRTS)
RDT RDT 2.282 - 8.3%
LDT RO 2.528 - 2.549
LoT H#DT 2. 447 - 1.73
LDT .
7 of First ADT 2,462 - 1,12
Row = T/2
RLDT
T of Pirst RDT 2,524 + 1.37
Row = T/2
t EXAC‘T "
Ref(1) 2,490
SHELL THICXNESS = 1,25
RQ RQ 2.213 -16.80
LDT : .
T of First RDT 2.56% - 3.65
Row=T/2 . ‘
REXACT" 2.660 |
REF(1,3) . S
SHELL THICKNESS = 2.167
RQ RQ 2.513 1 -18.14
LDT RDT 2.793 - 9:02
) "RXACT! 3,070
E REF (1) -

Table 3.4.1 - Peak SCF For Finlte Element Models For &

b5

Cylindrical Shell With Fipe: p_ 7 13.0, R = 112.0;,
v = 0.3, And t = 1.3. '
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Figure 3.4.4.- Comparison of NASTRAN results with experimental data for shell and pipe.
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Figure 3.4.5.- Nozzle (pipe)-to-cylinder (shell) intersection model from Prince, (7)
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?- Circumferential outside surface stresses for the nozzle @¢ =0

s Analytical points from structural analysis of shell
intersection , by N. Prince and Y.R, Rashid.(T)
Data obtained by finite element analysis

-{-' Experimental data from above report

& NASTRAN (finite element)} computer analysis points

[0 NASTRAN computer analysis peak principal stress

(68.1 ksi)
I R
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Flgure 3.4.6.- Comparxs()n of NASTRAN results with ana,lytlcal and experimental
data for shell and pipe,
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Figure 3.4.7.- Comparison of NASTRAN results with analystical and experim'ental
data for sheil and pipe. '
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3.5 8hell, Pipe, and Pad

The preceding sections provided comparilsons of the
accuracy of a variety of finite element solutions to
theoretical; numefical, and experimental results. Results
for this specific case (shell, pipe, and pad) are limited;
however, a configuration was chosen to test the MPC cards.
This configuration is two Intersecting cirecular cylinders
reinforced with a ﬁad. Thé same shell and pipe models 1n
Sections 3.3 énd 3.4 are used; consequently, a quarter of
the pad 1s modeled: outside pad radius, pp; and pad
thickness, tp; and all.of the shell and pad parameters
previously described. Typical finite element models for
a paﬁ are similar to those of the shell "radial" sectipn,
see Figures 3.5.1 through 3.5.3. A summary of the peak
SCF computer soclutions for a shell/plpe/pad configuration
is presented iﬁ Table 3.5.1.

There have been six shell/pipe/pad configuratlons
(14,15,17,22,24) -

(14)

experimentally Investigated. The NASTRAN

result as compared to first set of data 1s shown in
Figure 3.5.4. The dashed line is the author's extension
of the available experimental curve. The déscriptionslof
the two models to show convergence 1is presented 1In Table

3.5.2. The second comparison(lS)

is shown 1in Flgure 3.5.5
and presented in Table 3.5.3. This trend comparison is

outstanding. The accuracies of the two, -3.85% and -4.42%,
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is remarkable. The convergence of these NASTRAN models for
the two experimental cases lends authentlcity to the first
numerical case for which there is no comparison. Therefore,
the LDT shell, RDT pipe, and LDT'pad will be used as the
finite element model for other numerical NASTRAN results.
The other four experlmental results will be presented in
Chapter V (for comparison to the formula developed in

Chapter IV).



Figure 3.5.2.- RDT elements for pad.
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PPAD

Figure 3.5.3.- LDT elements for pad(s).

SHELL | ' SHELL
RADIAL - PIPE TOP PAD - _SCF
SECTION DESCRIPTION - DESCRIPTION (INSIDE)
DESCRIPTION . ¢ =0 & py
RQ . RDT EQ 1.711
RDT RDT RQ 1.808
RDT - RDT RDT 1.831
LDT RDT LDT 1.868

Table 3.5.1 - Peak SCF For Finite Element Models for
Cylindrical Shells With Pipe and Pad: p_ = 13.0, T = 1.25

R =112.0, v = 0.3, t = 1.3, t, = 1.5, & pp = 25.0




S.C.F.

Inside surface stresses @ ¢=0

¢ Pipe
3
B /—2.60 + Ramsey's formula 7
2.50 ~ K| <> NASTRAN computer run
246 ~{Y N ¥ WRC bulletin no. 60
N ref. (14)
bt
\ .
2 M Shell Pad Pipe
N Zad ipe
Y .
N R = 24.312 = 5.25 = 3.172
¢ Hole | N Pp Po
T= 0.625 t_=0.625 p, =3.032
A p a
Po TM t= 0.280
L r=10.3
& P "i‘_
| | pad |t
a
Py T § P -
- Shell—— — $
* >
A A | S
0 | 1.0 2.0 3.0
p/pg

pipe and pad.

Figure 3.5.4.- Comparison of NASTRAN results with experimental data for shell,
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SHELL SHELL PEAK SCF

SECTION - PAD © =0 & py| %

DESCRIPTION | DESCRIPTION | DESCRIPTION |yasTray | DIFF
RQ ©  RDT ~ RQ 2.116  l-18.62
LDT RDT LDT . 2.498 ~3.85

”EXACT” M‘ 2. 60
REF (14)

TABLE 3.5.2 - FEAK SC_F FOR FINITE ELEMENT MCDELS FOR A
PRESSURIZED CYLINDRICAL SHELL WITH PIPE AND PAD:

Py = 3.172, t = 0.280, R = 24,312, T = 0.625, Pp = 5.25,
tp = 0.625, AND v = 0.3.
SHELL SHELL(fFé¥ SCF
RADIAL PIPE , _
SECTION PAD o = 0 & pé %
DESCRIPTION ! DESCRIPTION | DESCRIPTION NASTRAYN DIFF
RQ | RDT 3Q 2.362 -5.90
LDT RDT LDT 2.399 -4 4z
"EXACT" 2.51
REF (15)

TABLE 3.5.3 - PEAK SCF FOR THE FINITE ELEMENT MODELS FOR
A CYLINDRICAL SHELL WITH PIPE AND PAD: po_ = 5,0785,
) £ =0.593, R =19.0, T = 2.0, py, = 9.482,% = 2.0,
JRIGINAL PAGE 1§ -+ .
OF FOOR QUALITY,

 Peceding page blank
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3.6 Shell, Pipe, and Pads
The shell, pipe, and pads configuration is often used
in the désign and construction of pressure vessels. One

experimental investigation for this configuration was
(23)

€

located through a paper by Kitching and Perkins. The
experimental results were for two intersecting circular.
eylinders (pipe and shell) relnforced with two pads (inside
and outside of the shell) as shown in Figure 3.6.1. The
experimental result was obtalned during an investigation

by the British Welding Research Association (BwRa). ()

The same shell, pipe, and pad models in previous sectlons
are used; moreover, a quarter of the second pad is modeled
1dentical to Figures 3.5.1 and 3.5.3. ‘A summary of the
peak SCF computer solutions,-for thé'sihplest and most
accurate type (from pfevious sections) finite element
configurations, 1is shown in Table 3.6.1. " This is the only
shell/pipe/pads experimental or numerical result avallable
and the LDT‘type mbdel has a difference of 9% above the
exact answer. "However, the actual maximum value (SCF)
would be slightly highér than the one measured in the ﬁest
since it is impossible to measure immediately at a point

of discontinuitym"(23} The discontinulty point would be at
the NASTRAN peak SCF location - inside shell surface at

¢ = 0 and p,+ The difference would be < 9%, which is within

RIGINAL PAGE I8
4E POOR QUALITY



SHELL SCF
WRADIAL" | | -
aerTon PIPE TOP PAD. BOT. PAD | |
DESCRIPTION | DESCRIPTION | DESCRIPTION | DESCRIPTION | NASTRON | DIFF
RQ RDT RQ R 1.662 | -7.67
LDT RDT LDT - LDT 1.56% 9.11
"EXACT® | 1.80
REF (24)
TABLE 3.6.1 ~ PEAK SCF FOR FINITE ELEMENT MODELS FOR A
PRESSURIZED CYLINDER WITH PIPE AND PADS: = 6. 13
£ = 0.4, R = 21.8125, T = 1.625, o 9.52, top = 1.375,
Pip = 9.86, £y, = 1.375, AND v =
(HE%AI;P@&EE B

engineering requirements.

Therefore,
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the LDT shell, RDT

pipe, and LDT pad(s) will be used in modeling all other

numerical NASTRAN results.

1.625

FIGURE 2.6.1 - DETAILS OF NOZZLE
WITH TWO PADS IN BWRA STULIES.

1.375 i «—0. 460
l
le—11. 8] e
1.375 DIA 3.5

ég%PE) IN A SHELL REINFQBCED

;EgE’B@QB’E&L&LEEg
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CHAPTER 1V
FORMULA

4,1 Introduction

In practicél applications one frequently encounters
problemé in whieh a circular cylindfical shell 1s submitted
to the action of forces distributed-symmetrically.with
respect to the axié of the cylinder. The stress distrlbu-
tion in wind tunnels, cylindrical containers,’and éirculér
pipes under uniform internal pressure are examples of such
problems.(3u)

For the case of circular cylindrical shells arbitfarily
loaded, two flrst approximation theoriés'are of prime
importance =~ fl) Love;s first approximatioﬁ theory and
(é) its simplified version-dué to Donnell. The simplified
version led to three partial differential equations in three

displacement components These three equations contain

terms which higher approximation theorles have shown to be

negligible. It is therefore permissible to simplify the

(9}

equations by omltting such terms. If these terms are
omitted (oniy pressure 1is considered) and the thickness“of
the shell 1s constant, these Donnell equatlons lead to a
single fourth order equation in w, the radial deflectlon,
for the case of axisymmetricaily loaded circular cylindrical
shells. Thls equation obtalned by a number of

au.xthors(9 34-36) is

o8 8
Ap,,mﬂ



with

where.

60

b o

d ET :
e il (13)
4z R°D
5 - ET3

- "_“"—fﬂg

12(1 ~ v&)
w 1s the radial deflection
"E  1s Young's Modulus of the shell

R is the shell mid radius '
T 4is the shell thickness
p 1s the internal pressure
v 1is the Poisson's ratio of the shell,

For the case of unsymmetrically loaded circular cylin-

dérs, the linear shallow, thin_shell equations may be

readily combined into two différential equations.involving

.only the membrane stress functlon F and the normal displace-

ment w.

JRIGINAL PAGE I8
0 POCR. QUALITY

The compatibility and equilibrium equations are

ET 32w
34 322
(14)
1 ¢F _ P
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JzZ



61

4 ] 29 8
where v i + 5 + 0

a7 32%3y% 3y

]

Elimination of the function P between the two‘equations
above yields an eighth order partial differential equation

in w of the form

8 Et 8w _ .p
Vow + = . . (15a}
| DRz BZE D .
or
8 ol Suw o
Vow + 648 7= = (15b)
37
where
L . _ET _ 3(1 - v°)
B .= 5 = 55
16R“D 16R°T

Equations (15) are known as Donnell's linear theory.

4,2 Force Around Hole
The result of a perturbation solutlion to Equation (15b),
modified to include a circular hole covered by a membrane
(Figure H.E.l); through terms of order pra)z 1s a stress
concentration factor at the hole-shell boundary.(z)
SCHF = —%— + cos 2 ¢ + ﬂ(Bpa)2(1 + % cos 2 o)+ . . .
(16)



o1 @OV TV

ALFIVID 2008 &0,

Fo;ce ® -0
a — _ _ — .
¥ J
ERREEEREE

Figure 4.2.1.- Penetration (radius pa) in a pressurized cylindrical

shell (mid radius R, thickness T, and Poisson's ratio
v) covered by a membrane,

cH
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For the case of ¢ = 0, Equation (16) becomes

SCF = 2.5 + —%— ™ (Bpa)2 (17)

where pa is the hole radius.
(4)

Savin's formula for the same problem is

SCF = 2.5 + _gﬁ%_ pg S (18)
“Lind's equation(26) 1s

(19)

roj=
y

SCF =1 + 4 Be, (1 +

Mershon(27) obtained for the same problem but with a pipe

intersecting the shell hole

1/2 1/2

= 2.5 +(Ex) e, (20)

p
- 0 2R
SCF = 2.5 + — (“T")
where Py 1s the plpe mid radius.
Mershon's EQuatioﬁ (20) is restricted to t/T % 0 (force
around hole only) or t/T small - where t is pipe thick-
ness.

Fof v = 0.3, these Equations (16 through 20) reduce to’

2.92 pa2

SCFvan Dyke ) = 2.5 + T (213.)

GE 18
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2

SCF %a

c Savin = 2.5 + 2.3 ~— (21b)
pa

SCFL_md = 1 + 2.585 ——--—-—-l/2 (21¢)
(RT) '

SCFMershQn = 2.5 + 1.414 Py (214d)

(RT)IZQ

The first attempt at a rational analysis of a long
pressurized cylindrical shell having a small-circular hole

(6)

and closed at its ends is due to Lur'e. Due to errors
introduced in the boundary conditions, his results are
ineorrect. The terms in Equation (16) of order (Bpa)2

were one-half the values obtained originally by Lur'e.

(8) (1)

This error was also confirmed by Eringen and Lekkerkerker .
Eringen, Naghdi, and Thiel(3) presented a study using the

exact solution of partial differential equations oflthin,
shallow, cylindrical shell theory. The boundary éonditions

were satisfied by use of Fourler series and the leasﬁ

square error technique through the aid of extensivé.huhern‘

ical calculatlions of the force only aféund a c¢ircular hole

in a cylindrical shell. A comparison of the results from

this "exact" approach with Equation (21) 1s shown in Figure
h,2,2.

'?ﬂEEUUBfﬁuﬂais
%E POOR. QUALITY
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10 L '
Van Dyke Savin
g e
Exact(3)
gase
B
T
T o
= , Lind
Q
W . :
°r /;*/<
// Mershon
.~ :
4 -
Experimental Results
3+ . Ref. (41)
z /
.
2 //
1 { | i L ] 1 ]
0 .2 4 .6 3 1.0 1.2 1.4

. Beg

Figure 4.2.2.- Comparison of formulas with exact results. -
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The two exﬁerimental resulté are those of Houghtan

and Rothwell.(41) Tn both of these experiments, only the
membrane stresses were measured. The stress concentration
féctors correspond to the ratio of the maximum membrane
stress at the.hole to the membrane stress in the shell far
from the hole. Excellent agreement 1s shown for the first
data point (8Bp, = 0.35). The experimental membrane
covering the nole consisted of a very flexible, thin metal

plug. This. may.have introduced slight restraints on the |
freedom of the hole edge. By measuring only the membrane
streés and, perhaps, introducing the slight restraint, the
peak SCF for the second experiment would be hilgher due to
the larger size hole (Bpa = 0.58).

The Van Dyke Equation (21a) is the only conservatilve
equation in comparison with the "exact" results(3) and the
first experimental case. Van Dyke's starting sefieé for
small 8p,» given by Equation (16}, 1s generally accurate
toa Bp, of abdgt 0.3.(2) The required englneering
accuracy is exceeded for Bpa > 0.63 Eherefore, this

equation 1is the one chosen to improve on in the following

format for the force around the hole

2
p
SCF gopea = 2:5 t A —f (22)
8
AL PAGE'IS

o  FOOR Qﬂm
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where 2.5 is the stress concentratlon factor for a flat
plate weakened by a circular hole with the plate
étretched per unit length in one direction and with
one-half of this stretch per unilt length in the

other direction,

and
P 2 :
ﬁ% is a function to increase the stress due to
shell curvature and thickness, and hole size,
. pa
with » for values of —2——._ shown in Figure 4.2.3,
- (RT)l/a

The values of A to go in Equation (22) can be taken
from this curve (PFlgure 4.2.3) or the maximum value of
A = 2.7 could be used. This value is used in Equation {(22)

in this report. For v = 0.3 the result is

2
o]
- a_ :
SCF popoe = 2:5 t 2.7 —&% (232}
or for any Vv
- 2 |
SCF popce ° 2.5 + 6.537 (Bpa) (23b)

) (3(1-v3NH4 o

where Bp

AL PAGE B
B,QﬂﬁleY
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Either use
B o : 2.7p,°
Outside SCF =25+
L RT
_____________ or
- 2

Inside-

>

| : ] | | ] J

2 0.5 0.8 1.1 1.4 1.7 2.0

P,/ RT

Figure 4.2.3.- Values of A in shell with force equation,
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4,3 Pipe Around Hole

The installation (physically or analytically) of a
pipe into a eylindrical shell (Figure 4.3.1) reduces the
peak stress concentration factor at the shelil-plpe juncture.
A function or reduction factar 1s needed to decrease this
stress due to a small amount of reinforcement from the
pipe. _The reduction is dependent on the amount of pilpe
reinforcement {opening and pipe thickness) not needed to
withstand the pressure. Thus, the followlng form is
assumed

= 8CF (reduction factor). (24

SCFPipe Force

The usual pressurization of cyiindrical vessels (wind
tunnels) 1s analogous to a suddenly applied load.(37) The
dynamic response of a structure due to this type load 1is

a dynamlc lcad factor df "one minus some term." Therefofe,

the above reduction factor takes the form
2 _ =
1 ~ (Bpo) (plpe to shell thilckness ratiloe) (25)

where Py 1s mid surface radius of the pipe and B 1s
modified to include Polsson's ratic of the pipe. The plpe

to shell thidkness ratioc (to be of the same order as B)

1/4

will be taken as (t/T) Equation (24) becomes

pAGE 18
m% quatTy
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Figure 4.3,1.- Pipe (mid radius p,, thickness t, and Poission's ratio

yp) in a pressurized cylindrical shell (mid radius R,
thickness~F: and Poission's ratio p).
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- t,1/4
SCF Lipe * §CF force |1~ (8;0,) (-% | (26)
The tofal equation.(EB and 26) developed thus far is
t\1/4
SCF o = (205 + 6.537 (800 1-(8100) ()
(27)

h. 4 Pilpe and Reiﬁforcing Pad Around Hole

The addition of an inner or outer reinforcing pad to
a plpe in a cylindrical shell is shown in Figure b,4.1.
The two new parameters introduced with this configuration
are the outside radius (p ) and the thickness (t ) of the
inner or outer pad. The major parameters from Equation (27)
that contribute to this configuration's influence on the
SCF are the mid radius (R), the thickness (T) of the shell
"and the inside radius (pa), the thickness (t) of the pipe.
~Thus, a function to decrease the.stress due to a reinforcing
a’ tp’
and t or T. This function should be similar to B8p

pad around the pipe or hole should contaln pﬁ, R, p

and multiplied times a pad to shell or plpe thickness ratio

to some power. Note that

2.,\1/4 P , -
(3( - v7)) D
Bp = B /2 . . (28)

ORIGINAL PAGE IS
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Force

€ Hole

pa:po-—t/z._—__). pop

| , 5 —1

_ o _ 1

R I T T PIessuIe i T T T T
) (a) Outer pad

¢ Shel

L Hole

Y

I

¥
=]
o=l

Tt

R Pressure

[ /P
(b) Inner pad p ¢ Sheil

Figure:l.‘l.l.w Pipe {mid radius P, thickness t, and Poisson's ratio vp) in a
pressurized cylindrical shell (mid radius R, thickness T and
Poisson's ratio ») reinforced with an inner or outer pad
{outside radius 2 and thickness tp).
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The pad to shell or pilpe thickness'ratio (to be of the same

order as B) will be taken as (tp/TH)l/”. ‘
Therefore, the reduction in peak stress concentration

factor due to an inner dr outer reinforcing pad to a pipe

in a cylindrical shell is

P £ -
i () 1/* (29)
/2 TH
(R pg)
where T™ =|t for cése of a thin, thin shell where pipe

thickness is more important than the shell

T for approaching case of a thick shell

L where shell thickness is more important
than the pipe.

The limits as to when each thickness should be ﬁsed
{(TH=t for % > 33 and TH=T for .% £ 33) are discussed
in Chapters V and VI under the presentation and discussion
of results. The SCF equation becomes

' o t 1/4
SCF . . = SCF . - ———25371/2(~Jl~3 - - (30)

The total equation (27 and 30) developed thus far 1is

ot N 2 2 __E__ l/“
SCF g = (2.5 + 6.537(Bp )"} |1 = (Byp,)" () |

P by L1/l '
Tﬁgang/Q ("f%—) {31)



Th

where p is outer or inner outside pad radius and tp

p
is ocuter or inner pad thickness,

4.5 Pipe and Reinforcing Pads Around Hole

The addition of inner and outer reinforcing pads to a
pipe in a cylindrical shell is shown in Figure 4.5.1. The
only new parameters intrcduced with this conflguration are
the outside radius and thickness of the second reinforcing
pad. ‘Therefore, the same type of term as Eqﬁation (29} will
apply as a reduction to Equation (31) to obtain the peak
stress concentration factor for two pads. The general

SCF equation becomes

_ ' ' 201, 2.t \1/U
SCF = (2.5 + 6.537(8p_ )7} |1 = (By0 )" ()" |
{32)
o] t p €. ‘
_ o opy1/H i ip,1/4
® o, /2 TR - Tﬁ"%;7 /2 ()

where subscripts o and. 1 are for the outer and inner
pads, respectively.

One can obtain the peak SCF for any of the previously
developed five cases (force, pipe, outer pad, inner pad,
‘and outer and inner pads) by merely substituting the
appropriate parameters in Equation (32). For example, the
pipe problem would be solved with o = p.. =t =t = 0,

op ip op ip
which would result in Equation (27).' The practical approach

e
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Figure 4.5.1.- Pipe and shell reinforced with inner and outer pads. .
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in the construction of cylindrical shells 1s to generally
reinforce around plpes; therefore, these five coﬁfigurations
are the major thrust of this research. Another combination
of cases can be addressed, i.e. force (t = 0) and pad{s).
The physical significance of force, no pipe, and pad(s)
could ve (1) a cap welded to a reinforcing pad to clese

off an opening and (2) glass ports for observing ﬁhe

inside of cylindrical pressure vessels (test sectionsj.

The accuracy of the formula 1s determined by comparing
to avallable and applicable published numerical, theoreticel,
and experimental data and to the analytical (NASTRAN)
results. Many different cases and examples of this formuls
were pursued in order to uncover the restrictions in the
formula. The aecuracy, results, and applications are
.presented and discussed in Chapters V and VI.

Since the formula is compared to theoretical (Shell
theory) and to the author's computer (NASTRAN) results, the
reliabllity of the answers from shell theory and NASTRAN in
this study 1s needed. An analogy to the cylindrical shell
problem is the exaﬁple of pure bending of an infinite_blate
with a circular hole. Reissner '2) addresses this problem
by including the effect of transverse shear deformations. |

It is assumed in Shell theory and NASTRAN that the stregses

vary;iigearly across the thickness. Relssner obtained a

factor”€?§=(in.lieu of 1.0) in front of the transverse

Wa@;‘}x‘?
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shear deformation terms 1n the stress-straln equations for
two-dimensional plafe thedry; The significance of this
difference is presented by comparing to an exact (three-
dimensional elasticity theory) analyslis of the plate with
a circular hole subject to pure bending. The effect of
transverse shear on the peak stress concentration factor 1is
negligible provided 'pa/T is greater than about 3.0.
Therefore,'even though Reissner's paper 1s concerned with
a flat plate, the effect of transverse shear on this study
will be negligible as long as pa/T > 3.0 and R/T > 25.C.
It 13 permitted in NASTRAN to ﬁse any shear factor
in front of the transverse shear deformation terms.(u3’uu)
The factor used in this study is 1.0. Theréfore? a
slightly different SCF than the exact answer Will be ?
obtained. All of the theoretlcal and NASTRAN resulté‘
presented in this study have a pa/T ratio greater than H;d,
except the NASTRAN configurations where the shell thickness
equals 8.96 (pa/T = 1.2 and R/T = 13). It will be shown
in Chapter V that for experimentallresults for pa/T < 0.6
and R/T < 15, thé transverse shear effects are not

negligible.

i,
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CHAPTER V
. PRESENTATION OF NUMERICAL RESULTS

5.1 Introduction

The finité element technique deserlibed in Sectibn 2.1
has been usedlto complete numerical analyses for the con~
figurations previously described (Sectlon 2.2, Chapters IIT
and IV): shell with force around hole, shell and pipe, and
shell/pipe/pad(s). The units used.throughout.this study
are 1n the English or American. System {inches and poﬁnds)..
Except where noted in these results, Poisson's ratio is
taken as 0.3 and Young's meodulus as 29 x 106 psi. - The

membrane stress of a cylihdrigal'shell 1s well known.
g =P = : (33)

The ratlo of the largest principal stress at a point
in question to that which would occur at that point if the
shell were not penetrated willlbe called a stress concentra-

tion factor (SCF). This is defined by

A0F = Max-cstress ) (3“) .
m -

where Gm is defined by Equation (33).

ik
L
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The numerical (NASTRAN) resqlts were calcuiated using
Langley Research Center's'CDC~6000 series computers. All
of the NASTRAN models are composed of triangular and
guadrilateral elements with_ﬁoth inplane and bending stiff-
ness. The pressurizéd cjlindrical shell with a ecircular
penetration is modeled as followsﬁ

1. General.sheli; Figure 3.3.l

2. Radial shell secticﬁ, Figure 3.3..

'3. Pipe, Figure 3.4.2 '

4, Pad(sy,rFigure'3;5.3.

For all of the tabulated reéults, the peak SCF at the
shell/hole or pipe/pad{s) juncture is given. Appendix A
éontains a representativg NASTRAN rﬁn. The detall computer
printoﬁts of{the'numerouS'cases fiil_a volume of 7 cubic
feet; therefore, for brevity, Appendix B contailns typical
ohe page summaries of the NASTRAN runs presented in this
section and Chapter III. These summarie$ fér shell thick- .
nesses 0.896 and 2.215 are organized in the following
configurations: force, pipe, pipe and pad, pipe and
pads, forece and pad, and force and pads.

The one page summary defines'barameters used to model
thatconfiguration: shell mid radius (R) and thilckness (T);
hole fadi%§ (pa); pipe mid radius (po) and thickness (t};
outer padfsutside radius (pop) and thickness (top); inner

pad outside radius‘(pip) and thickness (tip); and Poisson's

a



radio of shéll (v), pipe (up), and péd(s)
locaﬁion\of each SCF 1s determined by (1)
see Figures 2.2.1 and 2.2.2); (2) inside
outside surface (0/s) of shell, pipe, and

{3) ratio of the grid point location (p;

and 2.2{2)1divided by the pipe mid radius

The peak SCF used as the design criterion

80

(vPAD)' The

the angle.(¢,
surface (I/s) or
pad(s); and

see Figures 2.2.1

(o).

O

is the largest

of all SCF wvalues computed for a,configufation.

The accuracy of the NASTRAN results is determined by

comparing to theoretical and ‘experimental data. Since

limited data are available forfreinforcedipenetrations{ .

many different confilgurations were modeled to supplement

the published "exact" data to proﬁide the

restrictions to the fo:mula.

5.2 Formula Restrictions and Conditions

accuracy and *

The accuracy of the formula presented iIn Chapter IV

was Improved by imposing certain restrictions and conditions

based on the results 1n this chapter. These results were

from experimental, theoretical, published numerical;.and

the NASTRAN analytical results. The general restrictions

inherent in any shell theory or finite element solution -

are as follows:

1. o

1
= < 5 (Equation (9))
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2. —2< > 10
i
(thin shell theory)
3. i > 10 : ;
' T

b p /T > 1.2 (Transverse shear effect),

There are other conditions that the author” has used to -

improve the accuracy of the formula, .Thesefconditipns:are

) - - |
1. T < O-L’:l use SCFpipe = SCFfOPCe o
but retain the calculated SCF , . Tor SCF ./ oy,
(. R
2. TH =1t for > 33
R in Equation (32).
T -for T < 33 '

3. If ASME‘boded”top or bottom pad(39) (approximately
A A

o

hole < "reinf.), see Figure 5.2.1, and —— > 10,
then treat as a two pad problem with % tp on‘tdp
and % tp oen bottom.

2 ,t\1/4

b (By 0)° (B 1/% ¢ 1.9 or pipe is "ill-conditioned.”
2 (5

5. If (Bi P > 1.0, treat as "coded'pad -

condition 3._

2 (5% < 1.3, use

6. If 0.9 < (Bl po)

(£)*%  1n Equation (32) in place

TR, o
e_ (Bl po)
of Equation (25).



Rt

Ayeint. = Apad

Aleint. = (pop_ ) pa)top
' : _ A,rein_f. 2 Ah_ole
/ff/</i —
Ahole =Tp

Figure 5.2.1.- Illustration of"'re'infdrcement'” retiui-fed for ASME coded top
‘ or bottom pad, (38). = -+ -

A
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7. _If t = 0 and configuration is pad{s) reinforced,
then pp = 2p., TH = T, and treat as "toded' pad.

p
8. SCF from Equations (31) and (32) is always > 1.0.

A1l the‘fqrmula stress concentration factors are.obtained
from a computer program which is. based on Equation (32) and

these restrictions and conditions.

5.3 TForce, Pipe, and ?ipe/Pad(s)

~ Several éélculations were obtalned for the configuration
of Figure 4.2.1, forpe around the hole. These results were
computed to compére with theorefical ("exact") resﬁlts(l52’3)
as well as to provide cheqk points for the formula preseﬁted
in Chaptér IV, Equation (32), Throughout this chapter, the
formuia answers will be referréd to és SCF Ramsey. The
éomparisons between NASTRAN/"exact" (N-E), Ramsey/NASTRAN
(R-N), and Ramsey/"exact" (R-E) for different shell and
force conflgurations are presented in Table 5.3.1. The
second resulf in this table for R _ 156.5 will arbitrérily
be defined as the only membrane Eesult. ‘A1l other results
in this table are in the thin shell theory realm, 5 > 10.
The overall differences of the comparisons of the Eesults
are as follows: N-E, 17.4% andrw8.9%; R;N, 8.6%7 and -12.8%;
andaﬁgE, approximately #5%. Tﬁe minus sigh in this study

always indicates .less than and the plus sign greater than. .



| 4 Forcz (only)

PEAK SCF @ ¢ = 0 & Py

84

r—* ON INSIDE SURFACE vg = 0.3 1 > 10
Ps | E T | wasrean | EracTe | mansey N—E/i—?fFF ﬁ-E
2.m2 | oes | oone 6.497 | s5.534 | 5.663 | L2 233
7.09 501 0.32 9.603 10. 4 16.983 :T%%%g - 5.61
4. 8Y 50 | 0.40 6.199 | 5.530 | s.663 | g | 2.33
§.712 90 | 0.72 5.746 5.534 5.663 :—%f%% 2.33
10.842 | 112 | 0.896 5.406 5.534 5,663 - ﬁ:%% 2.33
13.0 112 | 1.084 5,907 6.027 6.259 = %:gg 3.85
1452 1150 | 1.2 5. 404 5.534 | 5.663 =532 | 233
13.309 | 112 | 1.25 5.643 5.746 | 5.916 :m%f%% 2.96
13.0 112 | 1.25 5.555 5.61% | 5.760 1—%f%% 2,60
12,285 | 112 | 1.25 5.374 5.316 | 5.411 ——%f%% 1.73
12.25 50 | 2.0 6.033 6,257 | 6.552 :“%f%% 71
13.309 ! 112 | 2.1667 | 4.478 u.ous7 | soary :—%f%% 0.31
10.7667 | 112 2.1667 | 3.5 3.774 | 3.790 222 | 0.u2
13.0 112 | 2.1667 | k.46d 4.371 | 4.380 —223 | 0.z
12.285 | 112 12,2667 | 4.331 4.170 | b4.179 : %:2? G.22
13.2 72 | 2.215 5.233 5.353 5.450 = ﬁ:ig .1.81
12.01 112 | 2.9867 3.836 3.639 3.664 :—%f%é .69
10.752 | 112 | 8.96 2. 694 2.958 | 2.811 :—%f%% 4. 97
Table 5.3.1 - NASTRAN, EXACT(I’ 2> 3), and Formula Comparisons

for Different Shell and Force Configurations.

&

%
g
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the "exact" value. 1In Figure 5.3.1 all three curves (NASTRAN,
"exact" and formula) are approaching the‘flatkplate (B = 0)

| value at 2.5. Fer’Bpa < 0.6 the three curves concide. For
Bpa > O.6(the NASTRAN curve is below (as expected) the "exact™,
and the formula curve is above (as desired).

The sheliJend“pibe configuratioﬁs (Figure 4.3.1) are
presented 1n Tables 5.3.2 through 5.3.6 for different types
of comp&riSons for varieus cateéeries. - The types of com-
parisons are as_follows: NASTBAN/exaet/Ramsey, Tablel5.3.2;
| analytical/Ramsey; Table 5.3.14; and ‘experimertal/Ramsey,
Tables 5.3.3, 5.3.5 and 5.3.6. .The categories are defined

.

as the following: ‘thin shell, T > 10y and thick shell,

R ' Po e Po
T < 10; thin pipe, T > 10' and thick pipe, <

Several NASTRAN thln shell and thin pipe configurations were

'modeled to eompare to theoretical(l 11), numerlca1(7), and

(?;14A17,20,2u)

< 10.

experimental results (see Table 5. 3 2(a) and
5-3 3(a). The overall differences of the thin shell and
pipe NASTRAN results from the "exact"-are —14 0% to 8 9%
:The formula differences between NASTRAN and .
"exact"(l’T’ll’lu’l7’20’2u)'are'approx;mately il“%?, Note
Athe configuration where vp = 0.3 and 0. 5 The accuracy:
of the formula as compared to both NASTRAN solutlons is

' approx1mately 3%.

The thin shell and thick pipe results are shown in

Tables 5.3.2(b) and'5.3.3(bl; Those in Table 5.3.2(b) are



12,0

10.0

8.0

Peak SCF

6.0
4.0
—— (O NASTRAN SCF
——~——=~ /\ Exact SCF
2.5 —m= -— --— ] Ramsey SCF
2.0 : '
1 | ) 1 | 1 1 |
0 0.2 0.4 06 . 08 1.0 1.2 1.4 1.6
' Bp,

Figure 5.3.1.- Effect of shell thickhess and curvature, and hole size (Bpa) on peak SCF

for shell and force (t=0) configurations.

98



Table 5 3.2 - NASTRAN, EXACT, and Formula Comparisons
for Different Thin Shell and Thick/Thin
Pipe Configurations: v = 0.3, v_ = 0.3;
except as noted.- : . P

Py R T E ASTRAN ‘.¥§?A§§; jﬁiﬁgEY N—EijEEFF R-E
2.42 | 25 .2 0.16 2.812 .856 2.898 Lo | 1
7.06 50 0.32 0.32 3.139 - 3.921 24,91
4. 8% 50 0.40 0.34 2,776 .856 2,8b4 2839 1 o2
8.712 | 90 .72 0.576 2.760 856 2.898 = %;38 147

10.842 | 112 .896 0.717 2.812 - 2.897 3. 02

10.842 | 112 0.896 .71?(vp 0.5) 3.061 - 3.152 ) i-i; .

13.0 112 1.084 | 1.3 2.162 490 2.107 TS | 71538
14.52 | 150 2 0.96 2.721 .856 2.898 :—%%%% 1.47
13.309 | 112 .25 0.6825 13.504- 420 3.120 ff%?g%” - B.77
13.0 112 .25 1.3 2.563 .660 2.562 5—%%%% - 3.68
12.25 50 .00 0.5 {728 .ol - ~ 4,29

13.309 | 112 '2.1667 | 0.682 N a2 159 4471 :—%f%? 0.27
10,7667 112 L1667 0;35668 2,992 157 3. 146 "g:ig' -0.35
13.0 | 112 1667 | 1.3 {2.793° .07 3.158 e 2.87
13.2 72 . 215 1.1 '2.809 .268 3.210 :%%f%§ 1.77
10.752 | 112 .96 0.895 2.770 790 2.811 = 0.72 c.75

> 10

Thin Pipe

Ag-



TABLE 5.3.2 - (concluded)

SCE
o R T SCF | EXACT" SCF % DIFF.
a NASTRAN |Ref. ( )| RAMSEY | R-E/R-N R-E
| ] 8.38

3.032 | 2u.312 0.625 .28 3,078 2.84 (18)] 3.209 T3 12,99
6.0 21.8125 1.625 1.625 - 2.60 (24)| 2,407 ' -7.42
2.475 | 5.0 0.1 05 6.743 | 7.129(7) - -5.42 -1.47
6.0 | 21.8125 1.625 000 - 3.000 (24) 2.956

(&) Thin Pipe £2 > 10
o R T t .| Rer, SCF SCF SCF % DIFF.

a ' | HASTRAN | "EXACT" | RAMSEY! N-E/R-N R-E
12.285| 112 2.1667 | 2.73 | (1,11)] 2.347 | (2.580) [ 2,775 | =g=33 | 7.56
12.285| 112 1.25 273t 1867 | - [ 1.795 | - 3.9 -
12.01 | 112 2.9867 | 4.48 |¢1,11)] 2.332 | 2.345 | z.647 ‘12'25 12.88

4,125 | 22.6725 4.845 0.938 | (24) 27 1. 3.3 2,918 -11.576

4.125 | 22.6725 4.845 10.938 |(24) -2 " 2.918 - 8.074

5.9375| 22,6725 4.845 1.438 | (24) - 3.3 - 3.367 2.03

(b) Thick-Pipe ( ﬁL/t < iU}
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Table 5.3.3 - Experimental and Formula Comparisons for Thin
Shell (R/T > 10) and Thin/Thick Pipe Configurations.

SCF | SCF 7
o, R T : L Reference | "EXACT" | RAMSEY DIFF
~ 3.06 11.860 0.281 0.25 (17) 3.C50 [2.975 - 2.46
0.98 7.659 0.153 - 0.021 (20) 4,750 |4.713 | - 0.78
6.00 21.813 1.625 0.380 (17) | 5.000 |5.242 i, gl
(a) THIN PIPE (Pt > 10)

0.97 | 24.844. | 1.688 0.730 (17) |, 3:.120 [2.524 ©-19.10
10.97 2L, 8UY 1.688 0.218 3.060 |2.561 |  -16.31
1.91 o4, 8UY 1.688 1.095 2.980 |2.589 ~13.12
1.91 24, 8Ly 1.688 0.729 2.980 |2.622 _ -12:.01
6.00 21,813 1.625 1.625 2.700 (2,407 -10.85
3.72 24, 844 1.688 1.593 2,910 [2.719 - 6.56
6.0G0 21.813 1.625 1.000 V 3.100 [2.956 - 4.65

(b) THICK PIFE (—{_’—0'< 10)

69
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slightiy more accurate than the thin'pipe results for both
the formula (+12%) and NASTRAN (-U4%) as compared to the

(1,11:24)

"exact" results. For the same category, 1t is

shown in Table 5.3.3(b) that the formula comparisons are

below the exﬁerimentalClT)

by 19%. The first four config-
urations in Table 5.3.3(b) and the last three in Table 5.3.2(b)
have pa/T < 1l.1. At the end of Chapter IV, it was sﬁated

that transverse shear effects would be negligible provided

pa/T > 3.0 and R/T > 25.0. Both 6f these.requirements

are viclated. Therefore, the low SCF from the formula isl '

to be expected since the hole is too small and/or the shell

too thick. Therefdre, the overall accuracy of'thé formula

for a thln shell and thick pipe 1is approximately +12% by

not includlng the configurations where -pa/T < 1.1 and

R < 1h.7.

m

The theoretical comparison'of Efingen's(l;)‘analytical
results to the formula for the shell and pipe configurations
is presented in Table 5.3.4., The accuracy between the two
of +8% is remarkable. The cases are tabulated by per cent
difference from lowest to highest. These are the only valid
casés from this report. The others violated all four of his
theoretical requirements:
R/T > 10, po/t > 10, Bpo < 0.5, and po/R < 1/3.

Tables 5.3.5 and 5.3.6 present numerous experi-.

1(8,1“1,16,17,19,21,22,135)

menta configurations for thick:
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Table 5.3.4 - Formula andAAnalytical(ll)Comparison for

Shell and Pipe Configurations.

2R/T

SCF-LIT

SCF

| CASE . ' .

NO po/R | Beg B/ FRef. (11] RAMSEY # DIFF
131 250.00 | 0501 .35900 ! .1000 3,63 3.330 -8.26
104 100.00 | L1001 .45800 ) .1000 y 11 3.823 -6.98
102 100.00 | 1001 45400 | 4000 3.31 3.130 -5.43
125 250,00 | .025 | 180001 .0250 2.86 2.709 -5.27
132 250.00 | .050] .35900 ] .0500 3,52 3.337 -5.,20
12k 250.00 | .025 | .18000 { .0500 2.85 2.708 ~5.00
126 250.00 | .025 | .18000 | .0125 2.85 2.710 =4.91
127 250.00 | .025 | .18000 4 .0062 2.85 2.711 -4,89

64 50.00 | .050 | .16100 | .0125 2.80 2.667 -4.75
130 . | 250.00 | .050| .35900 | .2000 3,48 3.317 -4, 68
20 10.00 | .250 | .35900 ] .1250 3.042 3.261 -0.63
63 50.00 | .0S0 | .16100 | .0250 2.79 | 2.665 -4, 47
18 10.00 | .100 | .14400 | .0250 2.75 2,628 -4 42
97 100.00 | .050 | 22700 | .0500 2.96 2.831 bz
98 100.00 | .050] 227060 | L0250 2.96 2.834 ~4.25
99 100.00 [ .650[ 22700 .0125 2.96 2.836 -, 20
21 10.00 | .250| .359¢C0 | .0625 3,04 3.302 -4.01
32 25.00 | .050 | .11400 | .0125 2,69 2.583 ~-2.99
g1 100.00 | L0251 .11400 | .0125 2.69 2.584 =3.96
92 100.00 | .025 | 11400 ] L0062 2.69 2.584 -3.94
18 10.00 | .250 ] .359C0 [ .5000 2.82 2,711 -3.88
38 2500 | 100 .22700} .0250 2.94 2.831 -3.71.
103 100.00 | .100{ .45400 | .2000 3.94 3.7597 -3,64
39 25.00 | .250| .56800 |2.0000 2.22 2,142 -3.51
123 250.00 | .025 ) .18000 | .1000 2.80 2,704 ~3.42
31 25.00 | .050 ] .11L00 | .0250 2.67 3,581 -3.33
90 100.00 | .025 | .11400 | .0250 2,67 2.583 ~-3.27
62 50,00 | .050 | .16100 | .0500 2.75 2.662 -3.20
129 250.00 | .050 | .35900 | .4000 3.05 2.953 ~3.17
37 - 25.00 | .100 | .22700 ) ,0500 2.91 2.82Y4 -2.95
96 100.00 | .050 [ .2270C | .1000 2,91 2.820 -2, 85
15 10.00 | .100 | .1l4koc | .0500 2.70 2,662 -2.89
19 10.00 | .250 | .35900{ .2500 3.27 3,183 ~2.65 .
56 50.00 | .025| .08000 ) .0125 2.61 2.541 -2.63
57 50.00 | .025 | .0800 L0062 2.61 2.542 -2.61
119 25C.00 | .010 | .07200 1 .0050 2.60 2.6530 -2.55
120 250.00 | .010 | .07200 ] .0025 2.601 2.534 ~2.55
105 100.00 | ,200| .45400 | .0500 3.93 | 3.837 -2.38
11 10.00 | .050| .07200 | .0125 2.59 2.582 ~-2,24
118 250,00 | .010| .07200 1 .0100 2.59 2.533 ~2.18
55 50.00 | .025| .08000 ] .0250 3.55 | 2.541 -1.51
89 100.00 | 025 | .11400 | .0500 2.63 2.581 -1,86
117 250.00 | .010| .07200{ .0200 2,58 | "2.533 -